A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension
نویسندگان
چکیده
This paper describes two simple three-dimensional autonomous chaotic flows whose attractor dimensions can be adjusted continuously from 2.0 to 3.0 by a single control parameter. Such a parameter provides a means to explore the route through limit cycles, period-doubling, dissipative chaos, and eventually conservative chaos. With an absolute-value nonlinearity and certain choices of parameters, the systems have a vast and smooth continual transition path from dissipative chaos to conservative chaos. One system is analyzed in detail by means of the largest Lyapunov exponent, Kaplan–Yorke dimension, bifurcations, coexisting attractors and eigenvalues of the Jacobian matrix. An electronic version of the system has been constructed and shown to perform in accordance with expectations.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملNoise-induced unstable dimension variability and transition to chaos in random dynamical systems.
Results are reported concerning the transition to chaos in random dynamical systems. In particular, situations are considered where a periodic attractor coexists with a nonattracting chaotic saddle, which can be expected in any periodic window of a nonlinear dynamical system. Under noise, the asymptotic attractor of the system can become chaotic, as characterized by the appearance of a positive...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملA novel four-wing strange attractor born in bistability
Attractor merging can exist in chaotic systems with some kind of symmetry, which makes it possible to form a four-wing attractor from a bistable system. A relatively simple such case is described, which has robust chaos varying from a pair of coexisting symmetric single-wing attractors to a double-wing butterfly attractor, and finally to a four-wing attractor. Basic dynamical characteristics of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 25 شماره
صفحات -
تاریخ انتشار 2015